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Abstract. On the basis of an expression for the (time-averaged) radiated power comprising
the radiation sources at the retarded time, an exact expression relevant to the emission by
reduciblemultipoles is obtained, which, along with the emission from independent multipoles,
accounts for the emission from the interaction between multipoles of different order. Whereas
the former contribution is known in literature, at least for the lower-order multipoles, the latter
contribution so far appears to have been overlooked. The result thus obtained is discussed in
reference to the treatment of multipole emission in terms ofirreducible multipoles, generalized
to non-monochromatic sources.

1. Introduction

The expansion of electromagnetic quantities in multipoles is a common and useful procedure
in electrodynamics [1], particularly in quantum electrodynamics [2, 3]. For time-dependent
sources and electromagnetic fields, such an expansion can be based on a description in
terms of plane waves, i.e. the sources and the fields are described in terms of their
Fourier transforms in both space and time, with the result that Maxwell’s equations are
reduced to a single algebraic equation, the inhomogeneous wave equation, whose solution
is straightforward. Such a procedure can be applied to describe wave processesin vacuo
as well as in an arbitrary medium [4]. Alternatively, with reference to emissionin vacuo,
one can express the fields, solutions of an Helmholtz-type (homogeneous) wave equation,
in a series of vector spherical harmonics, the corresponding expansion coefficients being
connected with the sources through appropriate solutions of the inhomogeneous system of
Maxwell’s equations [1, 2]. The equivalence of the two methods is a consequence of the
completeness of the respective sets of basis functions in the Hilbert spaceL2(R3) [5]. In
this respect, one should note that square integrable solutions are the only ones for which
the total electromagnetic energy is finite, so that all physical solutions belong to the Hilbert
spaceL2(R3).

As for the radiated power in the form of a multipole expansion, the solution in terms of
spherical waves allows a direct identification of the series of spherical harmonics with the
multipole expansion, to be referred to as expansion inirreducible multipoles [6], whereas
it has to be explicitly introduced, in the case of plane waves, by expanding either the
(Fourier transformed) source current density, as shown in section 2, or the source charge
and current density about the retarded time, as performed in section 3, the corresponding
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4274 U Bellotti and M Bornatici

multipoles being referred to asreduciblemultipoles [6]. These two sets of multipoles cannot
be straightforwardly compared and some caution is needed in their practical utilization, as
discussed in section 4. The results thus obtained are briefly summarized in section 5.

2. Emission by reducible multipoles on the basis of the emission formula

The time-averaged powerP radiated by a source current densityJ can be obtained
conveniently from the rate at which work is done byJ itself against the electric field
E it generates, namely,

P = − 1

T

∫ T/2

−T/2
dt
∫

d3r J(r, t) ·E(r, t) (1)

T being an arbitrarily long time compared to periods of interest. On expressing bothJ(r, t)
andE(r, t) in terms of their Fourier transformsJ(k, ω) andE(k, ω), respectively, and
utilizing the solution of the inhomogeneous wave equationin vacuo, from (1) one gets the
emission formula [1, 4, 7]

P = 1

c3T

∫ ∞
−∞

dω

2π

〈∣∣∣∣k̂ × ωJ(ωc k̂, ω
)∣∣∣∣2〉 (2)

where the angular brackets denote the average over the angle of emission, i.e.〈. . .〉 ≡
(1/4π)

∫
d2�k(. . .), d2�k being the element of solid angle about the direction of emission

k̂.
On using the definition of the Fourier transform, for whichJ((ω/c)k̂, ω) =∫

dt eiωt
∫

d3r e−i(ω/c)k̂·rJ(r, t), and expressing the exponential e−i(ω/c)k̂·r in terms of its
series expansion, the emission formula (2) can be put in a form pertinent to the emission
by reducible multipoles, i.e.

P = 1

c3T

∫ T/2

−T/2
dt 〈a2(k̂; t)− (k̂ · a(k̂; t))2〉 (3a)

the quantitya(k̂; t) exhibiting the multipole character of the emission process, namely,

a(k̂; t) ≡
∞∑
n=0

1

n!cn
dn+1

dtn+1

∫
d3r (k̂ · r)nJ(r, t)

=
∞∑
n=0

1

n!cn
k̂n · dn+1

dtn+1
M (n+1)(t) (3b)

where the bold-face dot· denotes the tensor product and amounts to saturating the indices
of the n-rank dyadk̂n with the firstn indices of the (n+ 1)-rank tensor

M (n+1)(t) ≡
∫

d3r rnJ(r, t). (3c)

The tensor (3c), which is to be referred to as the 2n+1-reducible multipole tensor, can
be expressed in terms of both time derivatives of electric 2n+1-moments and magnetic
multipole moments(n > 1), for example,M (1)(t) = ḋ(t), M(2)

ij (t) = 1
2 q̇ij (t)+ cεijkmk(t),

where a dot denotes differentiation with respect to time and whered(t) ≡ ∫ d3r rρ(r, t) is
the electric dipole moment,qij (t) ≡

∫
d3r rirjρ(r, t) the electric quadrupole moment and

m(t) ≡ (1/2c) ∫ d3r r × J(r, t) the magnetic dipole moment (ρ(r, t) is the source charge
density andεijk is the three-dimensional (3D) anti-symmetric unit tensor).
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Whereas result (3) is of immediate utilization for the multipole emission per unit
solid angle, to determine the total power radiated requires the angular average. The
latter amounts to calculating integrals of the form

∫
d2�k k̂i1 k̂i2 . . . k̂im with m even, the

average over any product of an odd number of factorsk̂ being zero because of the spherical
symmetry. Such integrals can be evaluated on saturating all pairs of indices except one,
and noting that̂ki k̂i = 1 and〈k̂i k̂j 〉 = δij /3. The angular average is, thus, proportional to
a sum of as many products of (m/2) unit tensorsδij as required for the correct symmetry
with respect to the interchange of indices. The constant of proportionality can then be
obtained on saturating the indices in pairs [4, 8]. Whereas the foregoing procedure is
straightforward for the averages for which the number ofk̂’s is not too high, for example
〈k̂i k̂j k̂r k̂s〉 = (1/15)(δij δrs+δirδjs+δisδjr ), it becomes rather cumbersome for a large (even)
number of factorŝk, with the result that it does not appear to be possible to express the
right-hand side of (3a) in terms of series of a generic average quantity.

On account of the quadratic dependence of the power (3a) with respect toa(k̂; t), to
a given order in(1/cm), with m an odd integer greater or equal to 5, along with terms
quadratic inM (n+1), i.e. emission by independent multipoles, there are contributions to
order (1/cm) also from cross terms, i.e. emission from the interaction of lower and higher
order multipoles. Explicitly, to evaluate the power (3a) to order (1/c5), say, one has to
consider the termsn = 0, 1, 2 of (3b), with the result that

P = 1

T

∫ T/2

−T/2
dt

{
2

3c3
Ṁ
(1)
i Ṁ

(1)
i

+ 1

15c5
[4M̈(2)

ij M̈
(2)
ij − M̈(2)

ij M̈
(2)
j i − (M̈(2)

ii )
2+ 2(2

...

M
(3)
iij Ṁ

(1)
j − Ṁ(1)

i

...

M
(3)
ijj )]

}
(4a)

where the sum over dummy (that appear twice) indices is implied. The first term of (4a)

is just the well known electric dipole emission(2/3c3)|d̈(t)|2, the overbar denoting the
average over time [4, 7, 8]. The contribution toP quadratic inM̈ (2) can be shown to be

equal to(1/15c5)( 3
4

...

Qij

...

Qij + 10c2|m̈|2), with Qij ≡ qij − 1
3Tr{q}δij the traceless electric

quadrupole moment; this contribution is, thus the standard electric quadrupole and magnetic
dipole emission [3, 5, 7]. The contribution to (4a) due to the cross effect betweenM (3) and
M (1), for which

2
...

M
(3)
iij Ṁ

(1)
j − Ṁ(1)

i

...

M
(3)
ijj

= 1

3
d̈(t) ·

(
d4

dt4

∫
d3r rr2ρ(r, t)− 5

d3

dt3

∫
d3r r × (r × J(r, t))

)
(4b)

originates from the interaction of the electric dipole moment with both the electric octupole
moment,

∫
d3r rirj rkρ(r, t), and the magnetic quadrupole moment,εimn

∫
d3r rj rmJn(r, t).

To our knowledge, result (4b) is new: the only terms considered hitherto for the
multipole emission to order(1/c5) have been the electric quadrupole emission and the
magnetic dipole emission [4, 8]. It appears somewhat surprising that such a relevant
contribution to the emission has been so far overlooked, although its relevance can be
easily verified by considering the specific case for which the source of emission is a point
charge: only on account of contribution (4b) one obtains the result predicted by the Liénard
formula, as shown in the appendix. On account of result (4b), the well known standard
formula for the emission by reducible multipoles to order(1/c5), which includes only
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emission by independent multipoles, cf, for example, equation (9-61) of [8], needs to be
rectified.

3. An exact expression for the emission in terms of reducible multipoles

On the basis of the emission formula (2) it appears quite difficult to obtain the emission to an
arbitrary mutlipole order, notwithstanding the fact that the cross terms between multipoles
of different order are not explicitly apparent. One can, however, put equation (2) in a
form such that the angular average no longer occurs (let us recall that it is just the angular
average that makes equation (2) somewhat unsuitable to treat the multipole emission). More
specifically, (i) express the(k̂ ·J) part of the integrand of (2) in terms of the charge density
ρ(k, ω) by means of the continuity equation, (ii) take the inverse spatial Fourier transform,
which makes the integration over the solid angle straightforward and (iii) after taking the
inverse temporal Fourier transform, carry out theω-integration, which yields the function
δ(t − t ′ − |r − r′|/c). The radiated power (2) can, thus, be written as [7]

P = 1

T

∫ T/2

−T/2
dt

{∫
d3r

∫
d3r ′

1

|r − r′|
(

[ρ(r′, t ′)]
∂ρ(r, t)

∂t
− 1

c2
[J(r′, t ′)] · ∂J(r, t)

∂t

)}
(5)

the square brackets meaning that the quantities within have to be evaluated at the retarded
time t ′ = t − |r − r′|/c.

With reference to the integrand of (5), let us make an expansion about the retarded time,
so that

[{ρ,J}(r′, t ′)] =
∞∑
n=0

(−1)n

n!

(
R

c

)n
∂n{ρ,J}
∂tn

∣∣∣∣
t ′=t

R ≡ |r − r′|. (6)

On noting that (i) the even powers of (6) yield zero upon the time integration in (5), which
amounts to replacingn by (2n + 1) in (6), and (ii) then = 0 term of theρ part of (5) is
zero, being proportional to(d/dt)

∫
d3r ρ(r, t)(= 0), so that(2n + 1)→ (2n + 3) for the

ρ part, one has

P = 1

T

∫ T/2

−T/2
dt

{ ∞∑
n=0

1

c2n+3

×
∫

d3r

∫
d3r ′

(
R2n

(2n+ 1)!

∂2n+1J ′

∂t2n+1
· ∂J
∂t
− R2(n+1)

(2n+ 3)!

∂2n+3ρ ′

∂t2n+3

∂ρ

∂t

)}
(7)

where the prime symbol denotes the dependence onr′. On making use of the continuity
equation to eliminate the charge density and by suitable integrations by parts over time and
space, and using the identity

∂

∂r′
∂

∂r
R2(n+1) = −2(n+ 1)R2n(2nR̂R̂+ I)

I being the unit tensor, one obtains

P = 1

T

∫ T/2

−T/2
dt

{ ∞∑
n=0

(−1)n4(n+ 1)

(2n+ 3)!c2n+3

∫
d3r

×
∫

d3r ′ R2n

(
(n+ 1)

∂n+1J ′

∂tn+1
· ∂

n+1J

∂tn+1
− n

(
R̂ · ∂

n+1J ′

∂tn+1

)(
R̂ · ∂

n+1J

∂tn+1

))}
.

(8)
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The n = 0 term of (8) is just the electric dipole emission, cf also (4a). To express the
nth term of (8) in terms of the 2n+1-reducible multipole tensorM (n+1), cf (3c), one has to
separate the space variablesr andr′ which are coupled throughR2n = ((r2+r ′2)−2r ·r′)n.
On applying twice Newton’s binomial formula, one finally gets

P = 1

T

∫ T/2

−T/2
dt

{
2

3c3
Ṁ
(1)
i Ṁ

(1)
i +

4

c3

∞∑
n=1

2n(n+ 1)!

(2n+ 3)!c2n
(An + Bn)

}
(9a)

the dipole term being written out explicitly,

An ≡
∑
k=0

1

(2kk!)2

{
n+ 1

(n− 2k)!
|Tr(k)M̃ (n+1)|2− 1

a(n− 2k − 1)!
(|Tr(k)M̃(n+1)

⇐ |2

+(Tr(k)M̃(n+1)) · (Tr(k)M̃ (n+1))T + 2(Tr(k)M̃ (n+2)
⇐ ) · (Tr(k)M̃(n)))

− 1

2(n− 2k − 2)!
(Tr(k)M̃(n+1)

⇐ ) · (Tr(k+1)M̃(n+1))

}
(9b)

and

Bn ≡
∑
k=0

int(k/2)∑
k′=0

1

2kk′!(k − k′ + 1)!

{
(n+ 1)

(n− k − 1)!
(Tr(k

′)M̃ (n−k+2k′))

·(Tr(k−k
′+1)M̃ (n+k−2k′+2))

+ 1

2(n− k − 2)!
((Tr(k

′)M̃ (ñ−k+2k′)
⇐ ) · (Tr(k−k

′+1)M̃ (n+k−2k′+2)
⇐ )

+(Tr(k
′)M̃ (n−k+2k′)) · (Tr(k−k

′+1)M̃ (n+k−2k′+2))T)

+ 1

4(k − k′ + 2)(n− k − 3)!
(Tr(k

′)M̃ (n−k+2k′−2)) · (Tr(k−k
′+2)M̃ (n+k−2k′+4)

⇐

}
.

(9c)

In equations (9b, c)

M̃ (n+1) ≡ dn+1

dtn+1

∫
d3r rnJ(r, t)

which is the(n+ 1)th time derivative of the 2n+1-reducible multipole tensor (3c) (the tilde
over a tensor just denotes such a differentiation), and

M̃ (n+1)
⇐ ≡ dn+1

dtn+1

∫
d3r rn−1(r · J(r, t))

the operator Tr(k) applied to a tensor saturates its first 2k indices in pairs, the symbol·
represents the usual tensor product and the modulus square of a tensor is defined as the sum
of the squares of its elements; moreover, with reference to the summation overk, there is
an upper limit which is fixed by the condition that the factorial of negative numbers has
to be excluded. Whereas the (infinite) summation over the integern(> 1) originates from
the expansion about the retarded time, cf (6), the two (finite) summations over the integers
k(> 0) and k′(> 0) have to do with the binomial expansion applied twice to the quantity
R2n occurring in (8).

Expressions (9), the main result of this paper, yield the emission by reducible multipoles
to any order in(1/c3+2n). The emission at a given multipole order, labelled by the index
n, comprises terms quadratic in respect to a single multipole, cf the terms of (9b) except
the framed one, as well as bilinear terms related to the interaction of pairs of multipoles of
different order, cf the framed term of (9b) and the contribution (9c). The latter cross terms,
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in particular, so far appear to have been overlooked in the literature [4, 8]. More specifically,
for n = 1, i.e. the contribution of order(1/c5) to the multipole emission, the relevant cross
terms are given by the two framed terms of (9b) and (9c) with n = 1, k = k′ = 0, and
equations (9) just reproduce the result (4a), with no contribution from both the last term of
(9b) and the terms of (9c) other than the framed one. Then = 2 contribution out of (9), i.e.
the order(1/c7)-multipole emission, is given explicitly in table 1, for which no contribution
comes from the last term of (9c), all the other terms giving ak = 0 contribution, the first
term of both (9b) and (9c) yielding also a contribution fork = 1. It is to be noted that
the ability to obtain the exact result (9) relies on having utilized the expression (5) for
the radiated power; the utilization of the (apparently more inspiring) emission formula (2),
instead, does not appear to make it possible to achieve such a result, due to the awkward
angular average one has to deal with, as discussed in section 2.

Table 1. Explicit expression ofAn andBn for n = 2, cf equations (9b, c).

An
3
2M̃

(3)
ijkM̃

(3)
ijk − 1

2M̃
(3)
ijj M̃

(3)
ikk − 1

2M̃
(3)
ijkM̃

(3)
kj i − M̃ (2)

ij M̃
(4)
ijkk − 1

2M̃
(3)
iij M̃

(3)
jkk + 3

4M̃
(3)
iij M̃

(3)
kkj

Bn 3M̃ (2)
ij M̃

(4)
kkij + 1

2M̃
(2)
ii M̃

(4)
jjkk + 1

2M̃
(2)
ij M̃

(4)
kkji + 3

4M̃
(1)
i M̃ (5)

jjkki

4. Reducible multipoles versus irreducible multipoles

A thorough treatment of multipole emissionin vacuo has been given on the basis of the
expansion of the electromagnetic field in terms of vector spherical waves, by which the
emission in terms of irreducible multipoles is obtained [1, 2]. For a comparative discussion
of our results (4) and (9), expressed in terms of reducible multipoles, let us first recall
briefly the basic points of the treatment of [1] and [2], extending it to non-monochromatic
sources. Instead of using (1), on evaluating the (time-averaged) radiated power in terms of
the (time-averaged) flux of the Poynting vector through an arbitrarily large spherical surface
enclosing the radiation sources, one has

P = c

4πT

∫ ∞
−∞

dω

2π

∫
d2�r2|E(r, ω)|2 (10a)

= c3

4πT

∫ ∞
−∞

dω

2π

∑
l,m

(∣∣∣∣aE(l,m;ω)ω

∣∣∣∣2+ ∣∣∣∣aM(l,m;ω)ω

∣∣∣∣2) (10b)

with

E(r, ω) = eikr

kr

∞∑
l=1

l∑
m=−l

(−i)l+1(−aE(l,m;ω)r̂ ×Xlm + aM(l,m;ω)Xlm) k ≡ ω/c

(11)

for the (time-Fourier-transformed) electric field in the radiation zone, cf, for example,
equation (16.73) of [1], whereXlm(θ, φ) ≡ −(i/

√
l(l + 1))r × ∇Ylm(θ, φ) are vector

spherical functions, withYlm(θ, φ) spherical harmonics, the orthogonality properties of
which are exploited to carry out the integration over the solid angle in (10a). The coefficients
aE andaM are given by, cf, for example, equations (16.91) and (16.92) of [1],(
aE(l,m;ω)
aM(l,m;ω)

)
= 4πk2

i
√
l(l + 1)

∫
d3r Y ∗lm

(
ρ(r, ω) ∂

∂r
(rjl(kr))+ ik

c
(r · J(r, ω))jl(kr)

∇ ·
(
r×J(r,ω)

c

)
jl(kr)

)
(12)
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where jl(x) are spherical Bessel functions of the first kind;ρ(r, ω) and J(r, ω) are
the (time-Fourier-transformed) radiation sources. For the specific case of monochromatic
sources, for which, for example,ρ(r, ω) = πρ(r)(δ(ω−ω0)+ δ(ω+ω0)), equation (10b)
reduces to Jackson’s equation (16.79) [1].

With reference to equation (10b), let us (i) use the definition of the time Fourier transform
of the radiation sources, for example,ρ(r, ω) = ∫

dt eiωtρ(r, t), (ii) express the Bessel
function jl(kr), k ≡ ω/c, in terms of its series representation, i.e. [9],

jl

(ωr
c

)
=
(ωr
c

)l ∞∑
n=0

(−1)n

2nn!(2(n+ l)+ 1)!!

(ωr
c

)2n
(13)

(iii) integrate by parts with respect to timet and t ′, such that, for example∫
dω

2π

∫
dt
∫

dt ′ ω2(n+n′+m) eiω(t−t ′)ρ(r, t)ρ(r′, t ′)

=
∫

dt
∫

dt ′
(
(−1)n

∂2n+m

∂t2n+m
ρ(r, t)

)(
(−1)n

′ ∂2n′+m

∂ṫ2n
′+m ρ(r

′, t ′)
)∫

dω

2π
eiω(t−t ′)

the ω-integration now reducing simply toδ(t − t ′), which makes one of the integrations
over time straightforward. With these steps, expression (10b) for the radiated power takes
on the form

P = 1

4πcT

∫ T/2

−T/2
dt
∑
l,m

(|aE(l,m; t)|2+ aM(l,m; t)|2) (14a)

with, from (12),(
aE(l,m; t)
aM(l,m; t)

)
= 4π

i
√
l(l + 1)cl

∞∑
n=0

2n+ l + 1

2nn!(2(n+ l)+ 1)!!c2n

× d2n+l+1

dt2n+l+1

(
Q
(2n)
lm (t)− M̃(2n)

lm (t)

−M(2n)
lm (t)

)
(14b)

where  Q
(2n)
lm

M̃
(2n)
lm

−M(2n)
lm

 = ∫ d3r r2n+lY ∗lm

 ρ(r, t)
1

2n+l+1
r·J̇(r,t)
c2

1
2n+l+1∇ · (r×J(r,t))c

 . (14c)

With respect to result (9), notwithstanding the formal difference of the respective
multipoles, namely, multipole moments in the form of Cartesian reducible tensors in (9)
compared to multipole moments in terms of irreducible tensors, cf (14c), it appears that,
becauseaE and aM of (14a) are both proportional to(1/cl+2n), cf (14b), to evaluate the
multipole contribution at a selected order in(1/c) one has to collect the relevant terms
originating from the infinite summations overl andn, the latter one being squared, which
makes the practical utilization of result (14) significantly less straightforward than (9).

With reference specifically to Jackson’s book [1], result (14) constitutes a generalization
of Jackson’s result (16.79) inasmuch as it accounts for contributions from non-
monochromatic multipoles to any order in(1/c2n). As for Jackson’s approximated
expression (16.93)–(16.94) for the electric multipole coefficientaE , valid in the long-
wavelength limit, it is obtained from Jackson’s (16.91) by neglecting the(r · J) term
with respect to theρ-term, the former one being of higher order than the latter one [10], as
apparent in (14c). Such an approximation, valid within a well-definedn-value, no longer
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holds on summing overn, since, for example, theρ term forn = 1 is just of the same order
as the(r ·J) term forn = 0, cf (14b). As a consequence, to order(1/c5), in addition to the
(l = 2, n = 0) contribution, there is also the contribution resulting from the(l = 1) term
combined with the product of then = 0 andn = 1 terms from the square of the summation
overn, which just leads to result (4a); the latter contribution, along with all the other cross
terms of higher order, is (inconsistently) disregarded in Jackson’s result (16.93)–(16.94),
as well as in the corresponding ones of [2] and [10]. In this regard, it is worth noting a
private communication by B French to Blatt and Weisskopf, cf footnote on p 806 of [2],
where he remarked that it is somewhat surprising that a quantity which depends onJ only
through its curl, cf, for example, Jackson’s equation (16.89), may be put in a form, although
approximated, which depends onJ only through its divergence, and hence only onρ. In
fact, result (14) just contains, along with contributions from theρ term, also contributions
from the(r · J) term.

5. Summary

On the basis of the emission formula (2), the radiated power has been obtained in terms of
reducible multipoles up to order(1/c5), cf equations (4); such a result rectifies the standard
formula for the multipoles emission, for which the contribution (4b) is not accounted for.
More generally, on making use of expression (5) for the (time-averaged) radiated power in
terms of the space and retarded time-dependent sources, an exact expression for the emission
by reducible multipoles has been obtained, cf equations (9), which includes, for the first
time, the contribution from the interaction between multipoles of different order. On the
other hand, such an exact result is hardly achievable on utilizing the emission formula (2),
for which the radiation source is simply the (Fourier-transformed) current density, due to the
awkwardness of the angular average one has to deal with. The results thus obtained have
been discussed in respect to the treatment of the multipole emission in terms of irreducible
tensors: it is just the consideration of the interaction terms between different reducible
multipoles that makes the two approached equivalent, as expected.
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Appendix. Multipole emission by a pointlike charge

In the specific case of a point charge, for whichρ(r, t) = qδ(r − rq(t)) and j(r, t) =
qδ(r − rq(t))ṙq(t), rq(t) being the charge’s instantaneous position, the quantity occurring
under the time average in (4a), without the cross term (4b), can be shown to be

P (pc)(t) = 2q2

3c3
|r̈q |2+ 2q2

15c5
{8|ṙq |2|r̈q |2+ (ṙq · r̈q)2} + P(t; rq)+O(c−7) (A.1a)

P(t; rq) ≡ 2q2

15c5
{2|rq |2| ...rq |2+ 7(rq · ṙq)(r̈q · ...rq)+ 2(rq · r̈q)(ṙq · ...rq)− (rq · ...rq)2

−3(rq · ...rq)(ṙq · r̈q)}. (A.1b)



Emission by multipoles 4281

On the other hand, the instantaneous power radiated by a point charge is given by the well
known Liénard formula [1, 8]

P (L)(t) = 2q2

3c3
γ 6

(
|r̈q |2− |ṙq × r̈q |

2

c2

)
= 2q2

3c3
|r̈q |2+ 2q2

3c5
{2|ṙq |2|r̈q |2+ (ṙq · r̈q)2} +O

(
1

c7

)
(A.2)

γ being the relativistic Lorentz factor, whose expansion to order(1/c2) yields the second
expression of (A.2).

Except for the electric dipole term, expressions (A.1) and (A.2) are manifestly different,
and such a difference persists even on time average, since (A.1b) in no way can be put,
via integrations by parts over time, in a form independent of the charge’s positionrq ,
as it would be required to reconcile (A.1) with (A.2). The agreement with (A.2) can be
only achieved on considering the cross term (4b), whose contribution to the ‘instantaneous’
power radiated by a point charge is

P (cross)(t) = − 4q2

15c5
|ṙq |2(ṙq · ...rq)− P(t; rq). (A.3)

Adding up (A.1) and (A.3) yields

P (pc)(t)+ P (cross)(t) = 2q2

3c3
|r̈q |2+ 2q2

15c5
{8|ṙq |2|r̈q |2+ (ṙq · r̈q)2− 2|ṙq |2(ṙq · ...rq)} (A.4)

which is just equal to (A.2), on time average and by virtue of the identity∫
dt |ṙq |2(ṙq · ...rq) = −

∫
dt {|ṙq |2|r̈q |2+ 2(ṙq · r̈q)2}

valid for periodic motions of the charge.
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